DeepFake Image Detection

Jeremy Tan, Xiyue Zhang, Adler Viton

Abstract

One of the key challenges in deepfake detection is developing models that can generalize effec-
tively to unseen data distributions. This study evaluates the performance of baseline, pretrained,
and fine-tuned deep learning models for deepfake detection on two datasets: DFDC for training,
validation, and holdout testing, and FakeAVCeleb as a black-box evaluation set. Fine-tuning out-
performed frozen transfer learning for ResNet-18 and NASNetLarge, with EfficientNet fine-tuned
with SGD achieving the highest accuracy of 77.16% on the holdout set. However, on the black-box
dataset, models experienced significant performance drops due to distributional shifts. The best
generalization performance was achieved by fine-tuned NASNetLarge, which outperformed the
baseline by 6%, achieving 70.32% accuracy. The effects of hyperparameter choices, particularly
learning rate and optimization strategy, were also analyzed. Additionally, we find that post-hoc
enhancements, such as KNN and SVM classifiers, improved performance on both datasets but
were less effective than fine-tuning the models directly.

1 Introduction

Manipulation of faces in digital images has become an increasing widespread problem over the years.
Bad actors initially used methods, such as naive face swapping and morphing, but those methods are
easily detectable with current technological advancements. The new methods of tampering, known
as deepfakes, allow for a fast, realistic way to exchange faces in a video or image. The first known
deepfake video was created in 2017, and current advancements has made it such that humans cannot
identify a deepfake with just the human eye [1].

Bad actors have taken advantage of this technology to spread fake news, as they are able to falsify
videos and images to spread misinformation on the Internet. Figure 1 shows an example of a deepfake,
where the fake face cannot be discerned from the human eye only.

Fake Image Real Image

Figure 1: Side by side comparison of deepfake and real image.

Meta held a competition, called the DeepFake Detection Challenge, between 2019-2020 [2]. The
purpose was to develop models that can generalize to unseen deepfakes. Thousands of participants
proposed different methodologies, but no method was found to fully detect unseen deepfakes [3].

In this paper, we evaluate the performance of baseline, pretrained, and fine-tuned deep learning models
across two distinct datasets: a holdout set derived from the training dataset and a completely unseen
black box dataset. Our goal is to investigate how these models generalize to new data and the extent
to which post-hoc enhancements, such as KNN and SVM, can improve predictive performance. We

explore a range of architectures, including ResNet, NASNetLarge, and EfficientNet, under different
training configurations and optimization strategies, comparing their robustness and adaptability. By
analyzing the discrepancies in model performance between the holdout and black-box datasets, we
aim to highlight the challenges of generalization and the critical role of hyperparameter tuning and
enhancement techniques in improving real-world applicability. This work provides actionable insights
into the strengths and limitations of popular deep learning architectures and optimization strategies.
The code and saved models can be found in our GitHub repository [4].

2 Related Works

The earliest work done to detect deepfakes were focused on non-deep learning approaches, analyzing
JPEG compression, odd lighting of images, resampled pixels, etc. [5]. Afchar et al. proposed using
CNNs, like MesoNet, to utilized dilated convolutions to encode and have broad contextual information
to determine forgery [6]. Other CNNs more focused on learning how GANs performed the deepfake
generation in order to spot them [7]. However, those methods don’t work as well with more sophisti-
cated deepfakes as those made by Meta [8]. Transfer learning allows models pre-trained on large-scale
datasets to be fine-tuned for specific tasks, such as deepfake detection, with relatively smaller datasets
[9]. This approach not only accelerates training but also enhances the model’s ability to generalize
across different types of deepfakes. By leveraging the knowledge captured from diverse datasets, trans-
fer learning can help detect deepfakes that were not explicitly part of the training data, offering a more
robust solution to the growing sophistication of generative techniques. Finally, instead of using the
final layer of the CNN for the classification, Rafique et al. has proposed using the CNN only for deep
feature extraction and using an SVM or KNN for classification [10].

3 Methodology

Figure 2 shows the overall workflow of our experiments. ResNet-18 model is used as a benchmark as
it’s the simplest model.

® PREPROCESSING

Q

SpitVideo _Faco IMODEL TRAINING
etecion

FoFrames D
= 7 \
EXPERIMENTS MODEL PREDICTION

SR c.gag[Bha ooy @

Fao
Cropping Data Spliting Data Loader E‘F 55555 (Image Mode! Export
Evlaton

Figure 2: Workflow to run experiments.

3.1 Preprocessing and Data Augmentation

We preprocessed two datasets for our experiments: DFDC from Meta as our train, validation, and
test dataset and FakeAVCeleb from Sungkyunkwan University as our blackbox dataset [2], [11]. More
information about these datasets can be found in Appendix A. The DFDC dataset was chosen for
its extensive collection of deep fake videos, providing a foundation for model training and evaluation
within the same data distribution. The FakeAVCeleb dataset, featuring deepfakes created using diverse
methods and representing varied demographics, was used to evaluate model generalization on unseen
data. Frames from approximately 19,000 videos were processed using a pretrained MTCNN to detect,
align, and crop facial regions, resulting in 380,000 face images across both datasets. To address class
imbalance, multiple frames were sampled from real videos, while single frames were taken from fake
videos. A subset of fake videos was used due to computational constraints, creating a training and
validation dataset of 35,000 images, a holdout dataset of 10,000 images, and a black-box dataset of
800 images, each with a 50/50 real-fake split for class balance. The holdout dataset consisted of
entirely distinct videos to prevent overfitting and ensure robust evaluation. Images were resized to
255x225 pixels, normalized, and augmented with techniques such as mirroring and color jittering
during training. Validation, test, and black-box datasets remained unaltered for unbiased performance
assessment.

3.2 Transfer Learning

The base model consists of ResNet-18, NASNetLarge, and EfficientNet-B0O with all layers unfrozen,
trained from scratch for binary image classification. We chose EfficientNet and NASNetLarge because
of their advanced architectures and better generalization capabilities compared to ResNet-18 [13],
[14]. EfficientNet uses a compound scaling method to balance depth, width, and resolution. It can
capture detailed and diverse features. NASNetLarge is designed through neural architecture search,
optimizing its layer configurations to extract complex hierarchical patterns. See Appendix B for more
information. By training the models from scratch, they are able to independently learn features
relevant to the dataset.

This experiment evaluated the performance of transfer learning on DeepFake image classification.
All layers for ResNet-18, NASNetLarge, and EfficientNet models were frozen to retain the general-
purpose features learned from ImageNet, and the final classification layers were customized with ReLU,
BatchNorm, and Dropouts to adapt to the binary classification task. The models were trained using
CrossEntropyLoss, the Adam optimizer with a learning rate of 0.001, and a batch size of 64 for 50
epochs, with performance assessed on a holdout test set.

3.3 Alternate Classification Methods

This experiment intends to exploit the feature engineering capabilities of the three net-based models,
ResNet, EfficientNet, and NASNetLarge, and pair them with the classification capabilities of K nearest
neighbors and support vector classification as discussed in Rafique et al [10]. After creating 128-
dimensional embeddings using the neural networks, KNN and SVC are compared to the traditional fully
connected layer classification. A different loss function, Triplet Margin Loss, is employed in the training
loop to produce advantageous embeddings for KNN and SVC. The embedding and classification models
are trained on a training set, a validation set is used to find optimal hyperparameters K for KNN and
C for SVC, and then an unseen holdout set is used to see results.

3.4 Tuning the Hyperparameters

Fine-tuning allowed the models to explore different hyperparameters and architectures. This experi-
ment involved unfreezing specific layers in NASNetLarge and EfficientNet to allow task-specific learn-
ing, and implementing deeper fully connected layers with ReLU, BatchNorm, and Dropouts. We tested
learning rates of 0.01, 0.1, and 0.2 with SGD and Adam optimizers to identify the best combination
of parameters for each model.

3.5 Model Generalization to Black Box Dataset

The black-box dataset, composed of videos from FakeAVCeleb, differs significantly in its distribution
and generation methods compared to the training dataset (DFDC) [11]. This distinction allows us
to assess the model’s performance on a completely unseen dataset, simulating real-world deployment
scenarios. By maintaining separate, unaltered datasets for evaluation, we ensured that the model’s pre-
dictions reflected genuine generalization capabilities rather than memorization of augmented patterns
seen during training [15]. These steps provide a fair and reliable comparison of model performance
across both familiar (holdout) and novel (black-box) data distributions.

4 Experiments

4.1 Transfer Learning

Table 1 shows the performance of the base models versus their pretrained counterparts. Although trans-
fer learning has faster convergence speed, it’s generalization without any fine-tuning didn’t improve
performance from the base model except for EfficentNet. In the first experiment, transfer learning was
applied to enhance model performance. Pretrained ResNet-18, NASNetLarge, and EfficientNet models
were used for DeepFake image classification. All layers were frozen to retain the general-purpose fea-
tures from ImageNet pretraining, while the final classification layers were customized with ReLLU for

non-linearity, BatchNorm for normalization, and Dropouts to mitigate overfitting. These customized

layers were trained specifically to classify images as real or fake.

Model Base Model | Pretrained Model
ResNet-18 71.66 57.95
EfficientNet 58.67 76.11
NASNetLarge 72.31 71.38

Table 1: Comparison of Base and Pretrained Models Accuracies.

Loss Function: CrossEntropyLoss; Optimizer: Adam with a learning rate of 0.001; Batch size: 64.
Models were trained for 50 epochs and evaluated on a holdout test set.

ResNet-18 performs worse for transfer learning compared to the base model because its simpler archi-
tecture with only 18 layers limits its ability to capture complex patterns. When frozen, its pretrained
features from ImageNet do not align well with the specific task of DeepFake detection. In contrast, Effi-
cientNet and NASNetLarge perform better in transfer learning because of their advanced architectures.
They extract richer and diverse features that can generalize better to new tasks.

However, the results from transfer learning are still not satisfactory. To further improve model per-
formance, we explore additional techniques in the following experiments such as K-Nearest Neighbors
(KNN) and Support Vector Classifier (SVC) using embeddings from the pretrained models, as well as
fine-tuning specific layers to allow the models to learn task-specific features. These methods aim to
address the limitations of frozen layers and enhance the models’ ability to adapt to the dataset.

4.2 Experiment 2: Alternate Classification Methods

The second experiment incorporates alternative machine learning methods into the classification pipeline.
Neural network embeddings are paired with K-nearest neighbors (KNN) and support vector classifi-
cation (SVC), replacing the traditional fully connected layer. This approach leverages the feature
extraction capabilities of ResNet-18, EfficientNet, and NasNetLarge while utilizing KNN and SVC for
classification. To train models for embedding rather than classification, a metric learning loss function
is required instead of traditional cross-entropy loss. Triplet Margin Loss was chosen for this purpose,
as it minimizes embedding distances for images in the same class while maximizing them for images
from different classes. This loss function operates by creating image triplets: an anchor image, a pos-
itive image from the same class, and a negative image from a different class. The Triplet Margin Loss
formula is:

£ = max (0,d(a,p) — d(a,n) +m)

where: a is the anchor, p is the positive sample, n is the negative sample, d(-, -) represents the distance
metric (Euclidean distance in this experiment), m is the margin (a positive scalar).

In practice, validation images are passed through the embedding model and then classified with the
KNN or SVM trained on the training data. After training the embedding models and classifiers KNN
and SVC on the training set of data, a validation accuracy is taken as a function of K for K nearest
neighbors in order to find the optimal K for each embedding model. A validation accuracy as a function
of C (inverse of regularization constant of SVC) is used to find the optimal hyperparameter for support
vector classification. The results of this experiment are shown in the table below with Appendix C
showing how we chose C and K:

Model DL Classifier Accuracy (%) | KNN Accuracy (%) | SVC Accuracy (%)
ResNet-18 71.66 73.08 73.44
EfficientNet 58.67 75.29 75.33

NasNetLarge 72.31 72.72 72.84

Table 2: Comparison of Embedding Models Across DL Classifier, KNN, and SVC.

EfficientNet had the most significant improvement and best validation and holdout accuracy. Across all
three types of embedding models, using KNN classification improved accuracy. Using SVC improved
the accuracy even more on all three models, but not by a significant margin from KNN. The best-
combined model was an EfficientNet embedding model paired with an SVC classification.

4.3 Experiment 3: Fine-Tuning

To improve model performance, specific layers in NASNetLarge and EfficientNet were unfrozen while
retaining frozen layers for ResNet-18. The goal was to allow the models to learn task-specific features
from the dataset.

For ResNet-18, all pretrained layers were kept frozen, while the fully connected layers were customized
with ReLLU, BatchNorm, and Dropouts to adapt to the task. In contrast, NASNetLarge and Ef-
ficientNet were fine-tuned by unfreezing specific deeper layers, allowing them to learn task-specific
features from the dataset. For NASNetLarge, layers cell_17, cell_18, and cell_19 were unfrozen, while
for EfficientNet, layers features.6, features.7, and features.8 were unfrozen.

Hyperparameters: learning rates 0.1, 0.01, and 0.2; Optimizers Adam and SGD; Loss Function
weighted crossEntropyLoss.

Optimizer | Learning Rate | ResNet-18 | EfficientNet) | NASNetLarge
Adam 0.01 64.35 64.35 66.72
Adam 0.1 64.35 50.07 49.93
Adam 0.2 53.47 53.80 49.93

SGD 0.01 73.53 77.16 69.36
SGD 0.1 70.26 72.31 70.22
SGD 0.2 66.93 69.79 68.71

Table 3: Comparison of Optimizer Accuracy Performance Across Models and Learning Rates.

The results showed that EfficientNet, fine-tuned with SGD at a learning rate of 0.01 performed best,
achieving an accuracy of 77.16%. NASNetLarge, also trained with SGD and the same learning rate,
achieved 73.53%. ResNet-18 showed improvement compared to Experiment 1, achieving 64.35% ac-
curacy with Adam at a learning rate of 0.01. Interestingly, ResNet-18 outperforms NASNetLarge in
certain configurations. This might be because its simpler architecture is less prone to overfitting when
trained on smaller datasets. EfficientNet and NASNetLarge show significant drops in accuracy at
higher learning rates (0.1 and 0.2) with Adam because of their sensitivity to aggressive weight updates
that may destabilize training. While Adam converges faster initially, it can settle into suboptimal
minima with smaller datasets. SGD with momentum is better at refining task-specific weights.

4.4 Experiment 4: Model Generalization to BlackBox Dataset

After training and fine-tuning all the models, evaluating model performance solely on the holdout
set does not fully capture its generalization capability. To ensure the robustness of these models, we
evaluated the generalization performance on the unseen dataset, FakeAVCeleb. Fig. 3 shows the top
10 models in comparison with the baseline model we used (ResNet-18). Appendix D shows the full
table of the performance of all 30 models.

Finetuned NasNet Generalizes the Best on BlackBox Dataset

NASNet (Ir=0.01, optimizer=adam)

ResNet18 (+KNN) 66.58

NASNet (Ir=0.2, optimizer=sgd) 66.31
Pretrained NASNet 66.04

ResNet18 (+5VC) 65.24

ResNet (Ir=0.01, optimizer=adam) 65.24
ResNet (Ir=0.01, optimizer=sgd) 64.97
Pretrained Efficient 64.97

ResNet (Ir=0.1, optimizer=sgd) 64.71

0 10 20 30 40 50 60 70 80

Figure 3: Top 10 Model Peformance on Blackbox dataset.

Looking at the performance of the top 10 models, the results reveal significant variations in generaliza-
tion capability when transitioning from the holdout dataset to blackbox dataset. The best-performing
models on the blackbox dataset generally showed lower accuracies compared to the performance on
the holdout-set, showing challenges in generalization on unseen data distributions.

5 Discussion and Conclusion

On the holdout set, models generally performed better, with the baseline ResNet-18 achieving a strong
accuracy of 71.66%. The highest-performing model on the holdout set was EfficientNet fine-tuned with
SGD at a learning rate of 0.01, achieving an accuracy of 77.16%. This demonstrates the effectiveness of
fine-tuning and optimized training strategies in improving model performance when evaluated on data
with similar distributions to the training set. In contrast, all models struggled on the black-box dataset,
showcasing the challenges of generalizing to unseen data distributions. Despite this, fine-tuning proved
crucial for improving generalization performance, with the fine-tuned NasNetLarge model achieving
6% higher accuracy than the baseline ResNet-18.

Transfer learning proved only useful when fine-tuning for both Resnet-18 and NasNetLarge as their
respective base models outperformed the frozen models. The DFDC dataset primarily consists of deep-
fake videos created using specific generation techniques, and fine-tuning allowed the models to adapt
their feature representations to these unique artifacts. In contrast, frozen models relied on generic
features from pretraining, which may not fully capture the localized inconsistencies and subtle manip-
ulations characteristic of the DFDC deepfakes. However, EfficientNet did not follow this trend, with
the frozen pretrained model outperforming its base counterpart. This discrepancy can be attributed
to EfficientNet’s high complexity and parameter count, which make it reliant on large and diverse
datasets for effective training [14].

When fine-tuning these models, lower learning rate achieved better performance for all models. For
architectures like EfficientNet and NasNetLarge, which are highly parameterized, a lower learning rate
is crucial. These models have complex weight structures that are finely tuned during pretraining,
and abrupt changes caused by higher learning rates can destabilize these weights, reducing their ef-
fectiveness in capturing generalizable features [13], [14]. Conversely, ResNet-18, which has a simpler
architecture, also benefits from lower learning rates as they help refine its pretrained weights with-
out overspecialization the training set [16]. Investigating learning rates lower than .01 in the future
would have been a better approach for this experiment. This was especially important when we tested
different optimizers, as Adam performed significantly worse than SGD on the holdout set. With the
high learning rates combined with Adam, the models overfit to the train and validation set while
SGD led to less overfitting. However, the adaptability of the Adam optimizer compensated for these
hyperparameter sensitives, allowing it to generalize better for NasNetLarge.

SVM and KNN classifiers showed limited improvements, suggesting future efforts focus on optimizing
embedding models alongside classifiers.

References

1]

2]

[7]

(8]

[13]

[14]

[15]

[16]

P. Korshunov and S. Marcel, “Deepfake detection: humans vs. machines,” arXiv [cs.CV], Sep.
07, 2020. [Online]. Available: http://arxiv.org/abs/2009.03155

“The DeepFake Detection Challenge Dataset,” 2020. [Online]. Available: http://arxiv.org/
abs/2006.07397

“Deepfake Detection Challenge Results: An open initiative to advance AIL” Ac-
cessed: Dec. 12, 2024. [Online]. Available: https://ai.meta.com/blog/
deepfake-detection-challenge-results-an-open-initiative-to\protect\penalty-\
OM-advance-ai/

ECE661-DeepFake-Detection. Github. Accessed: Dec. 12, 2024. [Online]. Available: https:
//github.com/vivianzzzzz/ECE_661_Deep_Fake_Image_Detection/

H. Farid, “Image forgery detection,” IEEFE Signal Process. Mag., vol. 26, no. 2, pp. 16-25, Mar.
20009.

D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “MesoNet: A compact facial video forgery
detection network,” in 2018 IEEFE International Workshop on Information Forensics and Security
(WIFS), IEEE, Dec. 2018, pp. 1-7.

Y. Li and S. Lyu, “Exposing DeepFake videos by detecting face warping artifacts,” arXiv [cs.CV],
Nov. 01, 2018. [Online]. Available: http://arxiv.org/abs/1811.00656

S. Pashine, S. Mandiya, P. Gupta, and R. Sheikh, “Deep fake detection: Survey of fa-
cial manipulation detection solutions,” arXiv [cs.CV], Jun. 23, 2021. [Online|. Available:
http://arxiv.org/abs/2106.12605

M. Masood, M. Nawaz, A. Javed, T. Nazir, A. Mehmood, and R. Mahum, “Classification of deep-
fake videos using pre-trained convolutional neural networks,” in 2021 International Conference
on Digital Futures and Transformative Technologies (ICoDT2), IEEE, May 2021, pp. 1-6.

R. Rafique, R. Gantassi, R. Amin, J. Frnda, A. Mustapha, and A. H. Alshehri, “Deep fake
detection and classification using error-level analysis and deep learning,” Sci. Rep., vol. 13, no.
1, p. 7422, May 2023.

H. Khalid, S. Tariq, M. Kim, and S. S. Woo, “FakeAVCeleb: A Novel Audio-Video Multi-
modal Deepfake Dataset,” in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021. [Online]. Available: https://openreview.
net/forum?id=TAXFsg6Za0l

K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multi-
task cascaded convolutional networks,” arXiv [cs.CV], Apr. 11, 2016. [Online]. Available:
http://arxiv.org/abs/1604.02878

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Architectures for
Scalable Image Recognition,” arXiv [cs.CV], Jul. 21, 2017. [Online]. Available: http:
//arxiv.org/abs/1707.07012

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional Neural Net-
works,” arXiv [cs.LG], May 28, 2019. [Online]. Available: http://arxiv.org/abs/1905.11946

A. Ballas and C. Diou, “CNN feature map augmentation for single-source Domain Generaliza-
tion,” arXiv [cs.CV], May 26, 2023. [Online]. Available: http://arxiv.org/abs/2305.16746

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv
[cs.CV], Dec. 10, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385

http://arxiv.org/abs/2009.03155
http://arxiv.org/abs/2006.07397
http://arxiv.org/abs/2006.07397
https://ai.meta.com/blog/deepfake-detection-challenge-results-an-open-initiative-to\protect \penalty -\@M -advance-ai/
https://ai.meta.com/blog/deepfake-detection-challenge-results-an-open-initiative-to\protect \penalty -\@M -advance-ai/
https://ai.meta.com/blog/deepfake-detection-challenge-results-an-open-initiative-to\protect \penalty -\@M -advance-ai/
https://github.com/vivianzzzzz/ECE_661_Deep_Fake_Image_Detection/
https://github.com/vivianzzzzz/ECE_661_Deep_Fake_Image_Detection/
http://arxiv.org/abs/1811.00656
http://arxiv.org/abs/2106.12605
https://openreview.net/forum?id=TAXFsg6ZaOl
https://openreview.net/forum?id=TAXFsg6ZaOl
http://arxiv.org/abs/1604.02878
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/2305.16746
http://arxiv.org/abs/1512.03385

Appendix A

Feature DFDC Dataset FakeAVCeleb Dataset

Source Meta (Facebook) Sungkyunkwan University

Purpose Benchmark for deepfake detec- | Evaluation of deepfake general-
tion models ization

Size Over 100,000 videos ~1,000 videos

Labeling Fully labeled (real vs. fake) Fully labeled (real vs. fake)

Deepfake Gener- | Multiple generation techniques | Variety of techniques, distinct

ation including GAN-based methods | from DFDC

and facial reenactment

Demographic Di-

Includes a range of faces but lim-

More diverse demographics in

versity ited in diversity subjects
Dataset Compo- | Split into train, validation, and | Used as a black-box evaluation
sition test sets dataset

Video Quality

High-quality videos, varied reso-
lutions

Varied resolutions, focusing on
realism

Challenges

Intra-dataset consistency, similar
patterns in real/fake

Inter-dataset distribution shift,
unseen patterns

Main Use Case

Model training and evaluation on
a known data distribution

Testing model generalization on
unseen data

Table 4: Comparison of DFDC and FakeAVCeleb Datasets

Appendix B

Feature ResNet-18 NASNetLarge EfficientNet
Architecture Residual Network (skip | Neural Architecture | Compound
Type connections) Search (automated de- | (width, depth, resolution)
sign)
Depth 18 layers Variable depth (searched | Configurable
architecture) (EfficientNet-B0
B7)
Number of Pa- | 11M 88M 5.3M (EfficientNet-B0)
rameters
Training Effi- | Moderate Computationally expen- | High efficiency due to scal-
ciency sive ing

Feature Extrac-
tion

Basic features with skip
connections

Complex, hierarchical fea-
tures

Efficient multi-scale fea-
ture extraction

Pretraining Widely pretrained on Im- | Pretrained on ImageNet | Pretrained on ImageNet

Availability ageNet and other datasets

Strengths Simplicity, ease of training | High accuracy, automated | High efficiency and accu-
design racy tradeoff

‘Weaknesses Limited scalability for | Very large and computa- | Requires fine-tuning for

deeper architectures

tionally intensive

optimal performance

Best Use Cases

General-purpose classifi-
cation

Tasks requiring high ac-
curacy and deep architec-
tures

Scenarios with limited re-
sources and need for high
efficiency

Table 5: Comparison of ResNet-18, NASNetLarge, and EfficientNet

Appendix C

KNN Accuracy vs K for Each Embedding Model SVC Accuracy by C for Each Embedding Model
0.805 - - 0.8050] - -
Ve VNP e i ol - S N
0.800 - 0.8025 1
N 0.8000 -
0.795 |
oy oy
] @ 0.7975 4
S 0.790 H =1
L ¥
S S
< < 0.7950 1
& 0.785 | 5
= 3
5 S 0.7925
g 0.780 3
0.7900 1
0.775 A
—— ResNet18 0.7875 1 —— ResNet18
0770 | —— EfficientNet —— EfficientNet
—— NasNetLarge 0.7850 { —— NasNetLarge
0 20 40 60 80 100 104 107% 102 107! 10° 10! 10? 10° 10*
K (Number of Neighbors) C (inverse of regularization constant)

Figure 4: Accuracy on Validation Set with varying hyperparameters for KNN and SVC classifiers.

Embedding Model | Optimal K | Optimal C
ResNet-18 10 1487
EfficientNet 86 1.269e-3

NasNetLarge 81 3.039e-2

Table 6: Optimal K and C Values for Embedding Models.

Appendix D

Model Accuracy (%) | Weighted Precision
Base ResNet 64.71 0.6746
Base NASNet 56.95 0.7615
Base Efficient 55.61 0.7575
Pretrained ResNet 58.29 0.6399
Pretrained NASNet 66.04 0.6767
Pretrained Efficient 64.97 0.6714
ResNet (Ir=0.01, optimizer=adam) 65.24 0.6692
NASNet (Ir=0.01, optimizer=adam) 70.32 0.7280
Efficient (Ir=0.01, optimizer=adam) 55.61 0.7575
ResNet (Ir=0.1, optimizer=adam) 44.65 0.4291
NASNet (Ir=0.1, optimizer=adam) 53.48 0.2860
Efficient (Ir=0.1, optimizer=adam) 46.52 0.2164
ResNet (Ir=0.2, optimizer=adam) 49.20 0.5593
NASNet (Ir=0.2, optimizer=adam) 53.48 0.2860
Efficient (Ir=0.2, optimizer=adam) 53.21 0.5270
ResNet (Ir=0.01, optimizer=sgd) 64.97 0.6487
NASNet (Ir=0.01, optimizer=sgd) 63.37 0.6342
Efficient (Ir=0.01, optimizer=sgd) 57.75 0.7011
ResNet (Ir=0.1, optimizer=sgd) 64.71 0.6462
NASNet (Ir=0.1, optimizer=sgd) 63.90 0.6389
Efficient (Ir=0.1, optimizer=sgd) 62.83 0.6817
ResNet (Ir=0.2, optimizer=sgd) 64.17 0.6454
NASNet (Ir=0.2, optimizer=sgd) 66.31 0.6623
Efficient (Ir=0.2, optimizer=sgd) 59.63 0.6108
ResNet18 (+KNN) 66.58 0.6705
ResNet18 (+SVM) 65.24 0.6546
EfficientNet (+KNN) 62.30 0.7185
EfficientNet (+SVM) 61.76 0.7137
NasNetLarge (+KNN) 64.17 0.6434
NasNetLarge (+SVM) 64.71 0.6472

Table 7: Model Performance on BlackBox Dataset

10

	Introduction
	Related Works
	Methodology
	Preprocessing and Data Augmentation
	Transfer Learning
	Alternate Classification Methods
	Tuning the Hyperparameters
	Model Generalization to Black Box Dataset

	Experiments
	Transfer Learning
	Experiment 2: Alternate Classification Methods
	Experiment 3: Fine-Tuning
	Experiment 4: Model Generalization to BlackBox Dataset

	Discussion and Conclusion

